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Abstract

In a weighted majority game each player has a positive integer weight and there is a positive
integer quota. A coalition of players is winning (losing) if the sum of the weights of its members
exceeds (does not exceed) the quota. A player is pivotal for a coalition if her omission changes it
from a winning to a losing one. Most game theoretic measures of the power of a player involve the
computation of the number of coalitions for which that player is pivotal. Prasad and Kelly [Prasad,
K., Kelly, J.S., 1990. NP-completeness of some problems concerning voting games. International
Journal of Game Theory 19, 1–9] prove that the problem of determining whether or not there
exists a coalition for which a given player is pivotal is NP-complete. They also prove that counting
the number of coalitions for which a given player is pivotal is [P-complete. In the present paper
we exhibit classes of weighted majority games for which these problems are easy.  2000
Elsevier Science B.V. All rights reserved.

1. Introduction

In a weighted majority game with n players, indexed 1 to n, player i, 1 # i # n, has a
positive integer weight w and there is a positive integer quota q. Let N 5 h1, 2, . . . , nji

denote the set of all players. Any subset of N is called a coalition. A coalition S of
players is winning (losing) if o w . q ( # q). Player i is pivotal for coalition S ifj[S j

S\hij is losing whereas S is winning. Most game theoretic measures of the power of a
given player, such as the Shapley Value and the Banzhaf–Coleman Index, involve the
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computation of the number of coalitions for which that player is pivotal. [Refer, for
example, to Roberts (1976) or Owen (1995).]

Suppose that we are given a weighted majority game. Let us denote by P (i) the1

problem of determining whether or not player i is pivotal for some coalition. The
problem is equivalent to the following subset sum problem:

Maximize O w x (1)j j
j[N \hi j

Subject to O w x # q, x [ h0,1j ; j (2)j j j
j[N \hi j

Player i is pivotal for at least one coalition if and only if the maximum value of (1)
subject to (2) is strictly greater than q 2 w . It was proved in Prasad and Kelly (1990)i

that P (i) is NP-complete. [For definitions of NP-completeness and all other terminology1

related to complexity theory used in this paper, refer to Papadimitriou (1994).] This
makes it very unlikely that there will be an efficient solution algorithm for P (i), where1

by an efficient algorithm we mean one which solves the problem in time bounded by a
polynomial in n.

We will denote by P the related problem:1

Maximize O w x , subject to O w x # q, x [ h0,1j ; j (P )j j j j j 1
j[N j[N

We will denote by P (i) the problem of determining the number of feasible solutions to2

(2). Observe that the number of coalitions for which player i is pivotal may be
determined efficiently (i.e. in time polynomial in n) if we have available an algorithm
which solves P (i) in polynomial time for all q. We need merely run the algorithm twice,2

once to determine the number of feasible solutions to (2) and once more to determine
the number of feasible solutions to:

O w x # q 2 w , x [ h0,1j ; jj j i j
j[N \hi j

and subtract the latter from the former. However, Prasad and Kelly (1990) show that
determining the number of coalitions for which player i is pivotal is a [P-complete
problem. This makes the existence of any such polynomial time algorithm most unlikely.
We will denote by P the related problem of determining the number of feasible2

solutions to:

O w x # q, x [ h0,1j ; jj j j
j[N

In the present paper we show that for certain choices of weights the problems P (i) and1

P (i) may be solved efficiently. For such weighted majority games it is therefore easy to2

determine whether or not a player is pivotal for some coalition and to count the number
of coalitions for which she is pivotal. We assume that two weights can be added in
constant time, and that we can ignore weights with many digits, and hence, the size of
the input is n. For the remainder of the paper we assume that w $ w $ . . . $ w .1 2 n
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Sorting the weights to ensure this requires O(n log n) time. [Refer, for example, to Aho
et al. (1974).]

2. Unbalanced weights

We will say that the set of weights W 5 hw , w , . . . , w j is unbalanced if w $1 2 n j

w 1 w 1 . . . 1 w , for all j, 1 # j , n. Thus, for example, h42, 20, 10, 5, 3, 1j isj11 j12 n

unbalanced. Unbalanced weights occur in a completely different context in cryptography
(refer, for example, to Konheim, 1981), though they are not given this name. It is
evident that a subset of an unbalanced set is itself unbalanced.

Consider now the following greedy algorithm which outputs the greedy solution
ng [ h0,1j to P .1

Greedy Algorithm:

• Initialization: Set SUM 5 0, j 5 1. Go to Step 1.
• Step 1 : If SUM 1 w # q, then set g 5 1, SUM 5 SUM 1 w . Else set g 5 0. Setj j j j

j 5 j 1 1. Go to Step 2.
• Step 2 : If j 5 n 1 1, then output the vector g and SUM and stop. Else go to Step 1.

Problem P is solved by the above greedy algorithm when the set of weights is1

unbalanced. This fact is apparently well known to cryptographers, and Konheim (1981,
p. 304) provides a sort of informal proof of this by the way of an example. We provide
below a quick formal proof.

First we prove a lemma which we will use several times in the paper. Note that the
lemma is valid for all sets of weights W, not just unbalanced ones.

Lemma 1. Let x be any feasible solution to P , different from the greedy solution g,1

such that g 5 x , for j , i, and g ± x , i.e. let i be the least (i.e. left-most) index inj j i i

which g differs from x. Then g 5 1 and x 5 0.i i

Proof. x 5 1 would imply that o w g 1 w 5 o w x 1 w # q. However, then thei j,i j j i j,i j j i

greedy algorithm must set g 5 1 too, which contradicts the definition of i. Hence, x 5 0,i i

g 5 1. hi

Theorem 2. The greedy algorithm solves Problem P if the set of weights hw , w , . . . ,1 1 2

w j is unbalanced.n

Proof. Consider any feasible solution x to P , different from the greedy solution g. Let i1

be the least (i.e. left-most) index in which g differs from x. Then g 5 x , for j , i, andj j

g ± x . By Lemma 1 x 5 0, g 5 1. Now:i i i i

O w g $O w g 1 w $O w x 1O wj j j j i j j i
j[N j,i j,i j.i

since the set of weights is unbalanced, and hence:
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O w g $O w xj j j j
j[N j[N

since x 5 0. This establishes the optimality of g. hi

The greedy algorithm clearly requires O(n) elementary arithmetic operations. Since
any subset of an unbalanced set is itself unbalanced we can solve P (i) for any given i in1

O(n) time by running the greedy algorithm on the set of weights W \hw j. Consequentlyi
2we can solve P (i) for all i, in O(n ) time, by running the greedy algorithm n times. We1

can, however, do better.

Theorem 3. P (i) can be solved for every i in overall O(n) time, if the set of weights1

hw , w , . . . ,w j is unbalanced.1 2 n

Proof. Consider an execution of the greedy algorithm on the set of weights W \hw j andi

let y denote the vector output at the end. The first i 2 1 executions of Step 1 are identical
to those of the same algorithm when run on the set of weights W. We must therefore have
y 5 g for all j , i. If g 5 0 then the last n 2 i executions of Step 1 must be identicalj j i

too. In this case y is simply obtained from g by suppressing g and the optimal objectivei

values of P and P (i) are identical.1 1

Suppose next that g 5 1. In this case, when Step 1 executes for the ith time, we havei

SUM 1 w 1 w 1 . . . 1 w # SUM 1 w # q, and therefore the algorithm sets y 5i11 i12 n i j

1, ; j $ i. It follows that in this case optimal solution to P (i) is y 5 ( y , y , . . . , y ,1 1 2 i21

y , . . . , y ), where y 5 g , ; j , i, and y 5 1, ; j . i. The optimal objective value ofi11 n j j j

P (i) in this case is o w g 1 o w . Now it is possible to compute all the partial1 j,i j j j.i i

sums o w g , 1 , i # n in O(n) time. In fact, these sums are computed in the course ofj,i j j

the greedy algorithm. It is only necessary to slightly modify the algorithm to keep track
of these. The partial sums o w , 1 # i , n can also all be computed in time O(n). It isj.i j

clear from the above discussion that if these partial sums are all available the optimal
objective value of each P (i) can be determined using a constant number of arithmetic1

operations. The result now follows. h

We next show that if W is unbalanced and g 5 ( g , g , . . . , g ), denotes the greedy1 2 n
n n2jsolution to P , then the number of feasible solutions to P is o g 2 1 1. In other1 1 1 j

words it is the binary number g g . . . g 1 1. In the following proof and thereafter we1 2 n

use uXu to denote the cardinality of any set X.

Theorem 4. If the set of weights hw , w , . . . , w j is unbalanced and g 5 ( g , g , . . . ,1 2 n 1 2
ng ), denotes the greedy solution to P , then the number of feasible solutions to P is on 1 1 1

n2jg 2 1 1.j

Proof. Let S denote the set of feasible solutions to P . Then S is the disjoint union of the1

sets S , 1 # i # n, where S 5 hxux is a feasible solution to P , g 5 x , for j , i, andi i 1 j j
ng ± x j, and the singleton hgj and uSu is clearly equal to o uS u 1 1.i i 1 i

Now by Lemma 1 if g 5 0 then uS u 5 0. Suppose now that g 5 1. Then each of thei i i

first i 2 1 coordinates of any solution in S must coincide with the correspondingi
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coordinate of g and the ith coordinate must be zero. Since g 5 1 o w # w # q 2i j.i j i
n2io w and so any of the 2 possible assignments of 0’s and 1’s to the last n 2 jj,i j

n2icoordinates yields a feasible solution to P . Hence in this case uS u 5 2 . The result1 i

follows. h

It follows trivially from Theorem 4 that P can be solved in O(n) time if the set of2

weights is unbalanced. Since any subset of an unbalanced set is also unbalanced P (i)2

can also be solved in O(n) time for any given i.
We conclude this section by remarking that a mild generalization of the above results

is possible. Let g be the greedy solution to P . Let us call a set of weights W 5 hw ,1 1

w , . . . ,w j generalized unbalanced if w $ o w (1 2 g ) ;i, 1 # i , n. (Equiva-2 n i j.i j j

lently the set of weights W 5 hw , w , . . . ,w j is generalized unbalanced if w $ o hw u1 2 n i j

j . i, g 5 0j ;i, 1 # i , n.) Each of Theorems 2, 3 and 4 remains valid if we replace thej

word ‘unbalanced’ by ‘generalized unbalanced’ in its statement. Since the proofs are
very similar we omit details.

3. Sequential weights

The set of weights W 5 hw , w , . . . ,w j is sequential if w uw uw . . . uw , where1 2 n n n21 n22 1

‘u’ stands for ‘divides’. Thus, for example, h24, 8, 8, 4, 4, 4, 2, 1j is sequential. It is
evident that a subset of a sequential set is itself sequential.

Sequential weights have been considered, for example, by Hartman and Olmstead
(1993) and others. Hartman and Olmstead (1993) consider the sequential knapsack
problem:

Maximize O p xj j
j[N

Subject to O w x # q, x [ h0,1j ; jj j j
j[N

where p ’s, w ’s and q are all positive integers, and the weights w are sequential. Theyj j j

show that this problem can be solved in O(n) time. A fortiori P can be solved in O(n)1

time if the set of weights is sequential. However, both the algorithm of Hartman and
Olmstead (1993) and its proof are quite complicated. We show below that the greedy
algorithm described in the previous section solves P when the weights are sequential.1

Lemma 5. If the set of weights hw , w , . . . , w j is sequential then for each j, 1 # j , n,1 2 n

either w . w 1 w 1 ? ? ? 1 w or else we can find an index k, j , k # n, such thatj j11 j12 n

w 5 w 1 ? ? ? 1 w .j j11 k

Proof. Suppose the lemma to be false. Then we can find an index k, j , k , n, such that
w . w 1 ? ? ? 1 w and w , w 1 ? ? ? 1 w 1 w . Then w . w 2 (w 1 ?j j11 k j j11 k k11 k11 j j11

? ? 1 w ). However, since w is a factor of each of w , . . . , w , the left-hand side ofk k11 k j
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the above inequality divides the right-hand side. However, then the right-hand side must
be zero. So w 5 w 1 ? ? ? 1 w which is a contradiction. hj j11 k

Theorem 6. The greedy algorithm solves Problem P if the set of weights hw ,1 1

w , . . . ,w j is sequential.2 n

Proof. The proof will be by contradiction. Suppose that the set of weights hw ,1

w , . . . ,w j is sequential but the greedy solution g is not optimal to P . Let x then be an2 n 1

optimal solution to P with the property that there exists an index i, 1 # i # n, such that1

g 5 x , for j , i, g ± x , and for any other optimal solution z to P , g ± z , for somej j i i 1 j j

j # i. In other words x is an optimal solution with the property that the least (i.e.
left-most) index in which g differs from x is as large as possible. We will derive a
contradiction by exhibiting another optimal solution y which agrees with g in at least its
first i coordinates.

By Lemma 1 g 5 1 and x 5 0. Consider the set S 5 hw u j . i, x 5 1j. Since x isi i j j

optimal and g is not, o w g , o w x which implies that w , o w . Now:j51 j j j51 j j i j[S j

hij < S being a subset of W is itself sequential. Hence, w 5 o w for some S9 # S. Iti j[S 9 j

follows that from x we can obtain a solution y with same objective value as x by setting
y 5 1, y 5 0 for all j [ S9, and y 5 x otherwise. We have g 5 y , for j # i. Whichi j j j j j

proves the theorem. h

The Greedy Algorithm is to be preferred to that of Hartman and Olmstead on several
counts. It is simpler to describe, implement and validate, involves less computational
overhead and has the same computational complexity. Most importantly it is possible to
solve P (i) for every i in O(n) time with the help of the greedy solution.1

Theorem 7. P (i) can be solved for every i in overall O(n) time, if the set of weights1

hw , w , . . . , w j is sequential.1 2 n

Proof. Let R denote the optimal objective value of P . Suppose first that g 5 0.1 i

Consider an execution of the greedy algorithm on the set of weights W \hw j and let yi

denote the vector output at the end. By using exactly the same argument as in the proof
of Theorem 3 we can show that y is simply obtained from g by suppressing g and thati

the optimal objective values of P and P (i) are identical.1 1

Suppose next that g 5 1. Let W 5 hw u j . i, g 5 0j. Since hij < W is sequential, iti i j j i

follows from Lemma 5 that there are exactly two distinct possibilities. Either w . oi j[Wi

w 5 o w (1 2 g ) or else we can a find V # W such that w 5 o w . In the firstj j.i j j i i i j[V ji

case, the greedy algorithm, when run on the set of weights W \hw j outputs the solutioni

y 5 ( y , y , . . . , y , y , . . . , y ), where y 5 g , for all j , i, and y 5 1, for all j . i.1 2 i21 i11 n j j j

This is therefore the optimal solution to P . The optimal objective value of P (i) in thisi 1

case is R 2 w 1 o w (1 2 g ).i j.i j j

In the remaining case the solution z 5 (z , z , . . . ,z , z , . . . ,z ), where z 5 1, for1 2 i21 i11 n j

all j [V and z 5 g otherwise, has the objective value R. This must therefore be thei j j
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optimal solution to P (i) and the optimal objective values of P and P (i) must be1 1 1

identical in this case too.
Now running the greedy algorithm once to determine g requires O(n) time. It is also

possible to compute all the partial sums o w (1 2 g ), 1 , j # n, in O(n) timej.i j j

recursively. It is clear from the above discussion that if g and these partial sums are
available the optimal objective value of each P (i) can be determined using a constant1

number of arithmetic operations. The result now follows. h

We have not been able to find a polynomial time algorithm for determining the
number of coalitions for which a player is pivotal when the set of weights W is
sequential. Neither have we been able to prove that the problem is necessarily difficult.
However, it is easy to solve P if the set of weights W, in addition to being sequential,2

satisfy the following condition.

3.1. Dominance condition

Let d . d . . . . . d be the distinct values of weights w , w , . . . ,w belonging to1 2 r 1 2 n

a sequential set. Then d 5 m d , where m . 1, ;k, 1 # k , r. Let N 5 hiuw 5 d j,k k k11 k k i k

and n 5 uN u. Then the dominance condition holds if m . n ;k, 1 # k , r.k k k k11

Thus, for example, the set h48, 16, 16, 4, 4, 4, 2, 1j is a sequential set of weights
which satisfies the dominance condition. Here d 5 48, d 5 16, d 5 4, d 5 2, d 5 11 2 3 4 5

and n 5 1, n 5 2, n 5 3, n 5 1, n 5 1.1 2 3 4 5

Lemma 8. If the set of weights hw , w , . . . ,w j is sequential and satisfies the1 2 n

dominance condition then ; j [ N , 1 # k , r, w . o hw u p [ N , i . kj.k j p i

Proof. If k 5 r 2 1 the lemma follows obviously from the dominance condition. Let us
then suppose the lemma to be true for k 5 i 1 1, . . . ,r 2 1. Now let k 5 i. For all j [ N :i

w 5 d 5 m d $ (n 1 1)d 5 O w 1 dj i i i11 i11 i11 p i11
p[Ni11

. o hw u p [ N j 1 o hw u p [ N , k . i 1 1j, by our hypothesis. Hence, for all j [ N ,p i11 p k i

w . o hw u p [ N , k . ij. Hence the lemma is true for i. This concludes the proof byj p k

induction. h

Suppose that W is a sequential set of weights satisfying the dominance condition. If x
is any feasible solution to P we will write L (x) 5 hiui [ N , x 5 1j and l (x) 5 uL (x)u.1 k k i k k

Lemma 9. Let x be any feasible solution to P , different from the greedy solution g,1

such that l ( g) 5 l (x), for k , i, and l ( g) ± l (x), i being a given index between 1 and r.k k i i

Then l ( g) . l (x).i i

Proof. l (x) . l ( g) would imply that o hw g u j [ L ( g), k # ij , o hw x u j [ L (x),i i j j k j j k

k # ij # q. However, then the greedy algorithm must set g 5 1 for some element ini

L (x)\L ( g) which is a contradiction. hi i
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Theorem 10. Suppose that the set of weights hw , w , . . . ,w j is sequential and satisfies1 2 n

the dominance condition. Let g 5 ( g , g , . . . ,g ), denote the greedy solution to P .1 2 n 1

Then the number of feasible solutions to P is:1

l ( g)21 l ( g)21r r1 r ii21 rn n n n1 j i jO n O nj jO 2 1O P O 2 1PS D S DS D S D S D S Di52 j5i11k l ( g) k l ( g)j51 j j51 jk50 i52 k50

nwhere ( ) is the number of ways in which r objects may be chosen from n.r

Proof. Let S denote the set of feasible solutions to P . For 1 # i # r, let S 5 hxux is a1 i

feasible solution to P , l ( g) 5 l (x) for j , i, and l ( g) . l (x)j. Let S 5 hxux is a1 j j i i r11

feasible solution to P , l ( g) 5 l (x) ; j, 1 # j # rj. Then from Lemma 9 it follows that S1 j j
r11is the disjoint union of the sets S , 1 # i # r 1 1, and so uSu 5 o uS u.i 1 i

nr j
Now uS u is clearly P ( ) since setting x 5 1, for any l ( g) of the n indicesr11 j51 j j jl ( g)j

in N gives rise to a solution in S . We now calculate the number of solutions in S forj r11 i

any i, 1 # i # r. To obtain a solution x [ S , 2 # i # r we have to set x 5 1 for exactlyi pnj
l ( g) of the n indices p in N , ; j , i. This can be done in ( ) ways. We also have toj j j l ( g)i

set x 5 1 for at most l ( g) 2 1 of the n indices p in N , 1 # i # r. It is possible to choosep i i inil ( g)21ithese in o ( ) ways. Suppose that we have obtained a partial solution x whose firstk50 k
o n coordinates have been fixed in this way. Using Lemma 8 we see that oj#i j

hw u j [ N , k . ij , d # q 2 o hw x u j [ N , k # ij so that any assignment of 0’s and 1’sj k i j j k ro nj5i11 jto the last o n coordinates yields a feasible solution to P . There are 2 suchj.i j 1

possible assignments. Hence:

l ( g)21 l ( g)21r r1 ii21n n n1 j iO n O nj juS u 5 O 2 and uS u 5P O 2S D S DS D S D S Di52 j5i111 ik l ( g) kj51 jk50 k50

if i $ 2. The result now follows. h

Example. Let W 5 h48, 16, 16, 4, 4, 4, 2, 1j, q 5 75. Then the greedy solution to P is1

g 5 (1, 1, 0, 1, 1, 0, 1, 1). So l ( g) 5 1, l ( g) 5 1, l ( g) 5 2, l ( g) 5 1, l ( g) 5 1.1 2 3 4 5

Applying Theorem 10, we see that the number of feasible solutions to P is:1

7 5 2 1(1 3 2 ) 1 (1 3 1 3 2 ) 1 (1 3 2 3 4 3 2 ) 1 (1 3 2 3 3 3 1 3 2 )
0

1 (1 3 2 3 3 3 1 3 1 3 2 ) 1 (1 3 2 3 3 3 1 3 1) 5 216

2It follows in a straightforward way from Theorem 10 that P can be solved in O(n ) time2

if the set of weights W is sequential and satisfies the dominance condition. Since any
2subset of such a W inherits these properties P (i) can also be solved in O(n ) time for2

any given i.
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4. Conclusion

In the present paper we have considered weighted majority games. We have shown
that it is easy to determine whether or not a player is pivotal for some coalition if the
weights are unbalanced, generalized unbalanced or sequential. We have also shown that
it is easy to determine the number of coalitions for which a player is pivotal if the
weights are unbalanced or generalized unbalanced. Finally we have shown that it is easy
to determine the number of coalitions for which a player is pivotal if the weights are
sequential and an additional dominance condition is satisfied.

We end by stating problems which we have not been able to resolve. Does there exist
a polynomial time algorithm for determining the number of coalitions for which a given
player is pivotal when the weights are sequential and the dominance condition does not
obtain? Or is the problem provably difficult in this case? What other choices of weights
make P (i) and P (i) easy?1 2
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