
Deadlock-free wormhole routing algorithms for
star graph topology

C.P.Ravikumar
A.M.Goel

Indexing terms: Parallel processing, Routing algorithms, Routing optimisation

Abstract: For constructing massively parallel
multicomputers with over 5000 processing nodes,
the Star Graph topology is known to be better
than the hypercube in terms of the average
routing distance, the number of links per node,
and the fault diameter. The authors present two
deadlock-free algorithms for routing in Star
Graph, assuming the Wormhole routing model.
Both the algorithms use the concept of virtual
channels introduced by Dally and Seitz. The first
algorithm is non-optimal in terms of the average
routing distance, but uses fewer virtual channels
on the whole. The second algorithm is optimal in
terms of routing performance, but requires a
somewhat larger number of virtual channels per
node.

1 Introduction

Message-passing multiprocessors based on direct inter-
connection networks have become popular in building
massively parallel systems with over 5000 nodes. The
hypercube interconnection network, for instance, has
been used in many existing commercial parallel proces-
sors such as the Intel iPSC/860 [7], NCUBE/7 [3], and
the Connection Machine [4]. More recently, Akers and
Krishnamurthy [8] introduced a class of graphs, known
as Cayley Graphs, on which communication-efficient
interconnection networks with good fault-tolerance
properties can be constructed. A particular subclass of
Cayley Graphs, known as Star Graphs, are known to
outperform the hypercube in terms of the average dis-
tance, the number of links per node, and the fault
diameter when the number of processing nodes is over
5000 [8]. An n-star graph consists of n\ nodes labelled
using permutations of 1 2 ... n. Two nodes labelled s
and t are joined by an edge iff t can be obtained by
swapping the first (left most) symbol of s with any
other symbol of s. For instance, a 4-star has 24 nodes;
the node labelled 1234 is connected to 3 other nodes -
2134, 3214, and 4231. Fig. 1 shows the topology of a 4-
star. If the label t can be obtained by swapping the z'th
symbol of s with the first symbol of s, we write

IEE Proceedings online no. 19952221

Paper first received 13th October 1994 and in revised form 6th July 1995

The authors are with the Department of Electrical Engineering, Indian
Institute of Technology, New Delhi 110016, India

t = 5«(«)

where g, is the rth 'generator' function which simply
swaps the symbol st, with s{. The following properties
of the Star Graph were proved by Akers and Krishna-
murthy [8].

(a) Star Graphs are node-symmetric and edge-sym-
metric.

(b) The degree of a node in an «-star is {n - 1)
(c) The H-star is maximally fault-tolerant, with a

fault-tolerance of (n - 2).
(d) The communication diameter of the «-star is

L3(H - l)/2j.
(e) The average distance between two nodes in an n-

star is n - 4 + Hn + 2/n, where Hn is the nth Harmonic
number.

1234 4231

314 2

Fig . 1 4-star topology

2143

7.7 Wormhole routing
Inspired by computer networks, early multicomputers
made use of store-and-forward routing technique,
where the entire message is buffered at each intermedi-
ate node before the message is forwarded to the next
node in the path [6]. In store-and-forward routing, the
communication delay is large and is directly propor-
tional to the length L of the path along which the mes-
sage is routed. Dally and Seitz [2] introduced a routing
technique called Wormhole routing, which overcomes
the above disadvantage. In a Wormhole-routed net-
work, each message packet is subdivided into flow con-
trol digits (flits). Flits are routed from the source to the

IEE Proc.-Comput. Digit. Tech., Vol. 142, No. 6, November 1995 395

destination in a pipelined fashion. Thus, the header flit
can arrive at the destination even before the last flit of
the message has left the source. All flits that belong to
a message packet make use of the same set of commu-
nication channels. In Wormhole routing, the communi-
cation delay depends mainly on the bandwidth of the
communication channels. Several commercial machines
such as the Intel iPSC/860 and research prototypes
such as the J-machine have adopted the Wormhole
routing technique [6]. A disadvantage of Wormhole
routing is that deadlocks can occur if special precau-
tions are not taken to avoid deadlocks by carefully
restructuring the routing algorithm [2]. Dally and Seitz
presented deadlock-free routing algorithms for several
network topologies such as the fc-ary «-cube, the Shuf-
fle-Exchange network, and the Cube-connected Cycles
[2]. In this paper, we present two deadlock-free algo-
rithms for the Star Graph topology.

node 123

312

312

312

C123

node
321

node
231

213

C231

123

213

123

123

CO

r-o
CO
rs j

i~

0 0

C213

r-o
CO

ro
CO

node
213

node
312

CO

r-o

3
2

1

321

node 13 2
F i g . 2 Deadlock situation in a 3-star

A routing algorithm for the K-star, which takes no
more than L3(« - l)/2j steps to route a message from
any given node S to a destination node D, was given in
[8]. However, the Akers-Krishnamurthy routing algo-
rithm is not deadlock-free, as can be seen in the exam-
ple of the 3-star (see Fig. 2). We label the channels of
the 3-star cs, where s is the label of the source node of
the channel. Using the Akers-Krishnamurthy algo-
rithm, the node 213 must forward the flit received
along channel c123 onto the channel c132. Following [2],
we construct a channel dependence graph G which has
one node corresponding to each channel. A directed
edge exists from a node c(in G to a node c,- if a flit is
presently on channel c, and the routing algorithm
would send the flit onto the channel Cj in the next step.
If each channel is associated with a flit-buffer of size 3,
a deadlock situation occurs in this example, where no
flit can progress towards its destination. Dally and
Seitz showed that a routing algorithm is deadlock-free
if and only if the channel dependence graph G induced
by the routing algorithm does not contain any directed
cycles. We shall ensure this by restricting the routing
such that a directed edge exists in the channel depend-
ence graph from channel ct to channel Cj only if i > j.

1.2 Organisation
In the following section, we present a routing algorithm
for the K-star that is similar to the e-cube algorithm for
Hypercube [2]. While the e-cube algorithm is deadlock-

free, our e-star algorithm is not; we show how the e-
star algorithm can be rendered deadldck-free [5] using
the concept of virtual channels introduced by Dally
and Seitz. However, as we shall prove in Section 2, it
turns out that the e-star algorithm is not optimal in
terms of the average routing distance. In Section 3, we
present a 'cycle merging' routing algorithm which is
optimal and deadlock-free. The two algorithms are
compared and conclusions are drawn in Section 4.

2 The e-star algorithm

The e-cube routing algorithm for a binary K-cube
routes a message originating at source S by 'correcting'
one bit at a time, starting from the most significant bit
of S. For instance, a message originating at 10110 and
intended for the destination 01101 in a 5-cube will be
routed along the path 10110-00110-01110-01100-
01101. The e-cube algorithm, which can also be gener-
alised for the k-ary «-cube, is deadlock-free [2]. We can
derive a similar algorithm for routing in the n-star.
This algorithm, which we call the e-star, corrects the
source label S one position at a time, starting at the
rightmost position. As an example, a message originat-
ing at node 2341 and intended for destination node
1234 will be routed along the path 2341-4321-1324-
3124-2134-1234.
procedure e-star (s, D, n, M);
begin

/* Route message M from node S to node D in an n-
star */
SO: if S = D then consume M;

else begin
SI: Find largest i < n such that D(z) =t S(z)

if S(l) = D(z) then begin
S2: T := g,(S);

e-star (T, D, n, M);
end else begin

S3: Find 7 such that S(/) = D(z);
T := g/S);
e-star (T, D, n, M);

end
end

end
The e-star algorithm may be understood using the

concept of sub-stars in a star graph. In the n-star, con-
sider the subgraph induced by all those nodes whose
labels have the symbol i fixed in their jth. position; we
denote this subgraph by ij. For instance, 24

3 represents
the subgraph induced by the nodes 1324, 3124, 1423,
4123, 3421, 4321. It is easy to see that ij is a sub-star
when j > 1 [8]. Given a node s, we denote the sub-star
induced by keeping s(J) s(j + 1) ... s(ri) fixed in their
positions by y(Sj), 1 < j < n. It is easy to see that \|/(^) is
also a sub-star.

The basic idea behind the e-star algorithm is to check
if the source S and destination D are on the sub-star
\]/(Dn); if not, the algorithm routes the message to a
node which is on the sub-star \|/(Dn). Thus the algo-
rithm has 'corrected' the last symbol of S to match the
last symbol of D. This procedure is repeated, until all
the symbols of S are corrected to match the symbols of
D.

Theorem 1: The e-star algorithm correctly routes a
message from a source S to destination D.

396 IEE Proc.-Comput. Digit. Tech., Vol. 142, No. 6, November 1995

Proof: Given the label of the current node S and the
destination node D, we define the function f[S, D) to
be the largest index i such that S(z') t- D(z). When S =
D, the function/is defined to be 0. Suppose that the e-
star algorithm routes the message from a node P to
node Q. Then it is necessarily true that f(Q, D) < / (P,
D), where D is the destination node. This may be seen
by looking at Steps SI and S3 in the above algorithm.
Step SI evaluates i = f(S, D). If the algorithm takes
Step S2, T is computed to be g,(S), in which case T(z) =
D(r'). Furthermore, the generator g, only changes the
z'th and 1st symbols of S. Therefore, / (T, D) is at least
one less than f(S, D). If the algorithm takes Step S3,
then / (T, D) = f[S, D) since 1 < j < i. We now claim
that whenever the e-star algorithm takes the Step S3,
the following call of e-star will take Step S2. If T is the
node to which Step S3 routes the message, then T(l) =
S(/) = D(i). In the following call of e-star, T takes on
the role of S, and hence S(l) = D(/), forcing the algo-
rithm to execute Step S2. Further, Step SI ensures that
the algorithm will only stop forwarding the message if
/(S, D) = 0. Hence the proof.

Theorem 2: The e-star algorithm takes no more than In
- 3 steps to route a message on an «-star. The average
routing distance achieved by the algorithm is 2« + 1 -

mn.
Proof: For correcting any position in the permutation
corresponding to S, the e-star algorithm requires either
no forwarding, a single forwarding step (Step S2), or
two forwarding steps (Step S3 followed by Step S2). In
the worst case, the algorithm takes 2 forwarding steps
to correct each of the rightmost (n - 2) symbols, and
then uses the Step S2 to correct the second symbol. Let
T(«) be the average routing distance between any two
nodes S and D on an «-star. Using the e-star algorithm,
routing on an n-star is equivalent to correcting the
rightmost position and then routing on the n - 1 sub-
star. The symbol required to correct the rightmost posi-
tion can be in any of the n positions of S with equal
probability. If this symbol is in the first position, one
forwarding step is required to correct the rightmost
position. If the symbol is already in the rightmost posi-
tion, no forwarding step is required to route to the sub-
star. Finally, if the symbol is in any other position j, 1
< j < n, two forwarding steps become necessary (Step
S3 followed by Step S2). Hence, the following recur-
rence relation results for T(«).

T(n)= (- x 0 + - x l + — -

Vn n n
(1)

It is easy to see that the basis T(2) = V2. Solving the
recurrence gives the required formula for T(n).

Theorem 3: The e-star algorithm of Fig. 3 is not dead-
lock-free.

Proof: For the routing pattern of Fig. 2, the e-star
algorithm behaves identically as the Akers-Krishna-
murthy algorithm, thereby inducing a directed cycle in
the channel dependence graph.

2.7 Making the e-star deadlock-free
We use the concept of virtual channels introduced by
Dally and Seitz [2] to achieve deadlock-free e-star rout-
ing. Each communication channel in the «-star is
divided into virtual channels; these virtual channels

share the same physical channel, but use independent
flit buffers. The notation used in this section is shown
as follows

x, y, z permutations on n symbols

nx node labelled using permutation x

sym(y, d) dth symbol of permutation y

sJj) permutation obtained by applying generator
gd to y i.e., by changing sym(y, 1) and sym(j,
d)

cky physical channel from node ny to ngn.k(y)

ns Source node

nD Destination node

R(c, nz) Routing function R returns the channel along
which a message received on channel c and
destined for node nz will be routed.

We split the physical channel cky into (k + 1) virtual
channels. A virtual channel is labelled cvky, where v
indicates the virtual channel number (n - k) < v < n.
Thus cvky is the virtual channel labelled v and shares
the physical channel cky which in turn connects node ny

to ngn.k(j,y We modify the e-star algorithm as shown
below; for convenience, we use d = (n - k).

if Vj > d! sym(gd(y),j) = sym(z,j)

f\ sym(gd(y),d') # sym(z,d')

/\ sym(gd(y),l) = sym(z,d')

Cd',n — i,gd(x)

if Vj > d' sym(gd(y),j) = sym(z,j)

f\ sym(gd(y),d') / sym(z,d')

f\ sym(gd(y),i) = sym(z,d')

We refer to two equations above as Rules 1 and 2
respectively. Thus both the rules use the J'th virtual
channel for routing, where d is the rightmost position
in which the current node differs from the destination.
Rule 1 is the case when the required symbol is in the
first place, and Rule 2 is the complementary case.

Theorem 4: The routing function Re_star is deadlock-
free.

Proof: It is enough to show that the routing algorithm
Re-star routes in the decreasing order of channel sub-
scripts. Let cvkx be the channel along which the mes-
sage is received, and let cv',k',gn_k(x) be the channel
along which the message is routed. We intend to show
that

v k x > v' x' gn~k(x)

If channel cvXx was opted for by Rule 1, then we are
assured that v > v' since v = f{x, z) and k = n - v; there-
fore,

v' = f(gn-k(x),z) = f(gv(x),z) < v

If channel cvkx was chosen by Rule 2, then we are
assured that v = v' and k > kf because v = fix, z), n - k
< v and therefore

v' - f{gn-k(x),z) = f(x,z)

IEE Proc.-Comput. Digit. Tech., Vol. 142, No. 6, November 1995 397

since (n — k) < v. This further implies that v = v'. Also,
since Rule 2 is followed by Rule 1, we have in - V)

2.2 Number of virtual channels
Theorem 5; It is sufficient to split the physical channel
cky into (k + 1) virtual channels, i.e., no more virtual
channels are necessary.
Proof: When a packet intended for node nz is routed
along cvkx, we have/(x, z) = v. Rule 1 is used if sym(x,
1) = sym(z, v) and we use v = (n - k). Rule 2 is used if
sym(x, i) = sym(z, v) for i > 1; in this case, we use i =
(n - k). We claim that when Rule 2 is used 2 < i < v.
This is because, for j > v, sym(x,y) = sym(z, j). Thus, in
either case, (« - k) < v. Therefore, we divide the physi-
cal channel cky into (k + 1) virtual channels labelled
cv,k,x' (n-k)<v<n.

3 Cycle-merging algorithm

Is well known that a permutation P on n symbols can
be represented by its cycle structure [1]. In this section,
we extend the concept of cycle structure slightly and
define the cycle structure of a permutation P with
respect to a permutation Q. If P = p\ P2 ••• pn

 a n d Q =
Q\ <?2 ••• am then the cycle structure of P with respect to
Q is obtained by constructing the following graph on n
nodes labelled from 1 to n. A directed arc is drawn
from node i to node j if i = px and j = qx for some x.
The cycles in this graph are then written down in some
order. The reader will observe that our definition boils
down to the conventional definition of cycle structure
when Q is the identity permutation.

The essential idea behind the cycle merging algorithm
is to transform the source permutation S into the desti-
nation permutation D. To do this, we write down the
cycle structure of S with respect to D. The source S
would have been transformed to D when this cycle
structure consists of n unicycles. We achieve this in two
phases.
8 Let there be u unicycles in the cycle structure of S
with respect to D. We leave the unicycles untouched.
We consider the remaining cycles (of length larger than
1) and 'merge' them into one single cycle of length (n -
u). A special case occurs if the first symbol of S forms a
unicycle. In this case, we merge this unicycle as well
and obtain a merged cycle of length (n - u + 1).

• The cycle of length in - u) or in - u + 1) in the special
case mentioned above, is now reduced to (n - u) or (» -
« + 1) unicycles through a series of swaps.
Example 1: Let S = 1 2 3 5 4 6 and D = 4 5 1 2 3 6.
The cycle structure of S with respect to D is (1 4 3) (2
5) (6). Here u = 1 and we merge the remaining two
cycles by swapping symbols 1 and 2. The resulting
cycle structure is (2 4 3 1 5) (6) and the permutation is
2 13 5 4 6. Now we use a sequence of 4 swaps as
shown in Table 1 to transform S to D.

Table 1

Swap Permutation Cycle structure

The cycle merging algorithm can be more formally
stated as follows,
procedure Cycle-Merge(S, D)
begin

Phase-1: Find least i such that S[z] ^ D[z] and S[i] is
not in the same cycle as D[l].

If no such i can be found then go to Phase-2.
Swap S[z] with S[l].
Go to Phase-1.

Phase-2: Find i such that S[l] = D[z]
if i = 1 then stop.
Swap S[l] with S[i\.
Go to Phase-2.

end

Theorem 6: At the end of the procedure Cycle-Merge, S
is transformed to D.
Proof: Let y indicate the set of all cycles of length
greater than 1 in the cycle structure of S with respect to
D. Denote by 8 the cycle which contains the first sym-
bol of D. (8 may or may not be a unicycle.) If y con-
tains at least one cycle other than 8, Phase-1 will merge
one of these cycles with 8. Phase-1 is repeated until y
contains only 8. Thus, at the end of Phase-1, the cycle
structure of S with respect to D consists of 8 and some
unicycles, if any. We now claim that when Phase-2
completes, there are n unicycles in the cycle structure of
S with respect to D. This follows from Lemma 1 given
below, and the fact that the swap statements are exe-
cuted until 8 becomes a unicycle.

Lemma 1: The swap statement in Phase-2 creates
exactly one unicycle and reduces the length of 8 by 1.
Proof: Both S[l] and S[z] in the swap statement belong
to 8, since S[z] and D[z] belong to the same cycle and
S[l] = D[zj. After the swap, a unicycle containing D[z] is
created and the length of 8 reduces by 1. See Fig. 3.

©0 ©0

2 and 5 5 1 3 2 4 6

5 and 1 15 3 2 4 6

1 and 3 3 5 1 2 4 6

3 and 4 4 5 1 2 3 6

(4 3 1 5) (2) (6)

(4 3 1) (5) (2) (6)

(4 3) (1) (5) (2) (6)

(4) (3) (1) (5) (2) (6)

F i g . 3 5 before and after the swap statement in Phase-2: (a) before
swapping; (b) after swapping

Theorem 7: The procedure Cycle-Merge uses the opti-
mal number of swap statements to transform S to D.

For a permutation Y on n nodes, let p(Y, D) denote
the number of cycles of length greater than 1, excluding
the cycle containing D[l]. Let q(Y, D) denote the
number of symbols of Y that are not in their proper
position with respect to D, excluding the symbol D[l].
Define

r(Y,D)=p(Y,D)+q(Y,D)

It is clear that r(Y, D) = 0 if and only if Y = D. The
algorithm Cycle-Merge transforms the given source S
to D by reducing r(S, D) to 0 through a sequence of
swaps. Table 2 shows all possible moves in a star graph
and their effect on r(Y, D). In this table, N indicates a
symbol in Y that is in its correct position with respect
to D; similarly, M indicates a symbol in Y that is not
in its correct position with respect to D. From Table 2,

398 IEE Proc.-Comput. Digit. Tech., Vol. 142, No. 6, November 1995

Table 2: All possible moves in a Star Graph

Move
type

Rule 1st Symbol
of new Y

Ap(Y,D) Aq(Y,D)

1 Dl
2 Dl
3 D|
4 D|
5 Dl
6 D|

7 Dl

1] Swap with any N
U Swap with any M
!/],;> 1 Swap with S[i]
i], i'# 1 Swap with S[/]
7], /V 1 Swap with any N
J], i* 1 Swap with any M

in same cycle
i\, /* 1 Swap with any M

in different cycle

X

X
D[1]
X

X
X

X

0

-1

0

0

0

0

-1

1

0

-1

-1

0

0

0

1

-1

-1

-1

0

0

-1

it is clear that no move in a Star Graph can reduce r(Y,
D) by a value larger than 1. Therefore, for any given
source S, r(S, D) is a lower bound on the number of
moves required to transform S into D. The algorithm
Cycle-Merge makes only those moves which reduce
r(Y, D) by 1. Specifically, the algorithm avoids moves
1, 5 and 6 (see Lemma 2). Hence the theorem.

Lemma 2: The algorithm Cycle-Merge never uses
moves of type 1, 5 or 6.

Proof: During Phase-1, the first symbol of S is swapped
with a symbol that is not a part of a unicycle. Thus
moves 1, 5 are not taken during Phase-1. Further, the
symbol chosen for swapping with S[l] must be in a
cycle not containing S[l] and D[l]. Therefore, moves 3,
4, 6 are not chosen by Phase-1. In Phase-2, the symbol
S[l] is taken to its correct position with respect to D.
Therefore, only moves 3 and 4 are permissible in
Phase-2.

3.1 Performance
We now prove some performance results in connection
with the Cycle-Merge algorithm. It will be seen that the
algorithm provides optimal performance in terms of
routing delays.

Theorem 8: The maximum number of swaps made by
the algorithm Cycle-Merge is |_3(n - 1)/2J. The average
number of swaps x(«) is given by (« + 2/n + Hn - 4).

Proof: In Theorem 7, we have seen that the routing dis-
tance between source S and destination D is given by
r(S, D) = p(S, D) + q(S, D). An upper bound on p(S,
D) is [(« - l)/2j since we can have at most _(n - 1)/2J
cycles of length larger than 1 on (« - 1) symbols. It is
easy to see that an upper bound on q(S, D) is (n - 1).
Hence the maximum number of moves made by the
algorithm Cycle-Merge is [_3(« - 1)/2_J. In order to
measure the average routing delay x(n), we develop a
recursive formulation for x(n). Consider a permutation
S' on (« - 1) symbols. We obtain a permutation S on n
symbols by inserting the «th symbol into any one of the
cycles of S'. Let x(n - 1) be the average number of rout-
ing steps associated with S'. The following cases arise.

(a) The rath symbol forms a unicycle in S. Clearly, x(n)
= x(n - 1) in this case.
(b) The «th symbol is part of the cycle containing the
first symbol. Here, x(ri) = x(n - 1) + 1 since one extra
move will be made during Phase-2 to take «th symbol
to its correct position.

(c) The wth symbol is inserted into a unicycle, resulting
in a cycle of length 2. Here, x(n) = T(« - 1) + 3 since
one extra move will be required in Phase-1 to merge

the 2-length cycle and two Phase-2 steps will be
required to take the two relevant symbols to their cor-
rect positions.
(d) The «th symbol is inserted into a cycle of length
larger than 1 and the cycle does not contain the first
symbol. In this case, %{n) = %{n - 1) + 1 since an extra
move will be required during Phase-2 to put the «th
symbol in its correct position. The average x{n) associ-
ated with S can be now worked out as

r(n) =

(2)

where pt is the probability of case i, 1 < i < 4. It is easy
to see that p\ = \ln Further, /?3 is given by

Average Number of Unicycles excluding (1) in S'
P3 =

= 1 -
n - 1

We further use p2 + p$ = 1 - (p\ + Pi) in eqn. 2 to
obtain the recurrence relation for x(ri).

2
T{TI) = r(n

n — 1
(3)

(4)

Solving the above recurrence gives the required result.
The reader will observe that the Cycle-Merge algo-

rithm gives the same (optimal) performance as the
Akers-Krishnamurthy algorithm of [8].

3.2 Rendering the CMA deadlock-free
We use the concept of virtual channels defined by
Dally and Seitz [2] to achieve deadlock-free routing.
Each physical channel cdY which originates from a
node labelled Y and which connects to the node
labelled g/Y) is implemented as a set of (n - 1) + \n -
dll\ virtual channels. Specifically, we divide each physi-
cal channel into

• \n - dll\ cycle-merging channels denoted by cXkdY
where \<k<\n-dl2\.

• (n - 1) cycle-reducing channels cOtkidiY, \ < k < (n - Y).
The following rules are used for routing.
(a) If Phase-1 of the Cycle-Merge algorithm has to be
applied, then route along the cycle-merging channel
c\,k,d,Y, where k = p(Y, D).
(b) If Phase-2 of the algorithm is to be used, then route
along the cycle-reducing channel cokdY where k = q(Y,
D).

IEE Proc.-Comput. Digit. Tech., Vol. 142, No. 6, November 1995 399

Formally, the routing function RCMA f° r the cycle-
merging algorithm may be defined as shown below.

JRcMA(ct,)U,,d,Y,D) = cliM,j5d(Y) ifk=p(gd(Y),D) >0

/\ Vj < d! (sym(gd(Y),j) andD[l]

are in same cycle in gd(Y) w.r.t. D

V sym(gd(Y),j)=-D[j])

A sym(gd(Y),d') and D[l] are in

different cycles in gd(Y) w.r.t. D

f\ sym(gd(Y),d!)^D[d!]

= co,i,d-,gd(Y) if p(5d(Y),D) = 0

/\l = q(gd(Y),D)>0

/\sym(<fo(Y),l)=D[d']

3.3 Number of virtual channels
We now show that the number of virtual channels used
in our algorithm of the previous section is sufficient.
When the first routing rule is used and routing is done
over a cycle-merging channel CjkdY, k = p(Y, D). An
upper bound on p(Y, D) is \n - dll\ since the Cycle-
Merge algorithm chooses the leftmost symbol d in Y
which is in one of the k cycles. There are at most in -
d) + 1 candidate symbols for selection. Since each of
the k cycles requires at least two of these candidates,
there can be at most \n - dll\ cycles of interest. Hence
k = p(Y, d)<\n- dll\.

Similarly, when we apply the second rule and route
along a cycle-reducing channel cOjidY, t = ?(Y, D) and
an obvious upper bound for q(Y, D) is (« — 1).

3.4 Dead-lock free property

Theorem 9: The routing function T^CMA
 lS deadlock-

free.
Proof: The following three cases occur while routing
using our algorithm.
Case 1. A packet received along a cycle-merging chan-
nel is forwarded along a cycle-merging channel
Case 2. A packet received along a cycle-merging chan-
nel is forwarded along a cycle-reducing channel
Case 3. A packet received along a cycle-reducing chan-
nel is forwarded along a cycle-reducing channel
In Case 2, the channel subscripts are obviously decreas-
ing, since a cycle-merging channel has a 1 in the first
position and a cycle-reducing channel has a 0 in the
first position. In Case 1, if the incoming channel is
C]W(IY

 a n (i the outgoing channel is q w' ,d ,g<j,(Y) then
we claim that w' = w - 1 < w. Recall that w = p(Y, D)

and w' = p(gJY), D). Since Phase-1 is in progress, each
step of Phase-1 reduces the size of yby 1. (See Theorem
6).

In Case 3, if the incoming channel is denoted c^wdY
and the outgoing channel is denoted cow',d',gd,(Y),
then we claim that w' - w - 1. Once again, recall that w
= q(Y, D) and w' = q(gJY), D). Phase-2 is being used,
and as illustrated in Theorem 6, the function q
decreases by 1 after each step of Phase-2.

4 Conclusions

We have presented two deadlock-free routing algo-
rithms for the Star Graph. Both these algorithms are
suitable in a Wormhole routing environment. Our algo-
rithms are based on the concept of virtual channels.
The first algorithm, called e-star, is similar to the well
known e-cube algorithm for hypercubes. Unlike the e-
cube algorithm, e-star is not deadlock-free, and we
achieve deadlock-free property through the introduc-
tion of virtual channels. We also presented a new cyde-
merging algorithm for routing in an «-star. We showed
that the cycle-merging algorithm can be made dead-
lock-free using virtual channels. The properties of the
e-star and Cycle-Merge algorithms are given in
Table 3.

Table 3

Routing
algo.

Maximum Average
routing routing
dist. dist.

Max. no. Avg. no. of
of virt. virt. chan.
chan. per per phys.
phys. chan. chan.

e-star 2n-3 2n+1-3Hn 72

Cycle-Merge | 3 J L " II I n+2/n+Wn-4 - 1

5 References

1 AKERS, S.B., and KRISHNAMURTHY, B.: 'A group-theoretic
model for symmetric interconnection networks', IEEE Trans.
Computers, 1989, 38, pp. 555-566

2 DALLY, W., and SEITZ, C.L.: 'Deadlock-free routing in multi-
processor interconnection networks', IEEE Trans. Computers,
1987, C-36, (5)

3 HAYES, J.P., MUDGE, T., and STOUT, Q.F.: 'A microproces-
sor-based hypercube supercomputer', IEEE Micro, October 1986,
pp. 6-16

4 HILLIS, W.D.: The connection machine' (MIT Press, 1985)
5 MISIC, J., and JOVANOVIC, Z.: 'Routing function and dead-

lock avoidance in a star graph interconnection network', /. Paral-
lel and Distributed Computing, 1994, pp. 216-228

6 NI, L., and MCKINLEY, P.: 'Tutorial on wormhole routing',
IEEE Computer, February 1993

7 PASE, D.M., and LARRABEE, A.R.: 'Intel iPSC concurrent
computer' in BABB, R.G. (Ed.): 'Programming Parallel Proces-
sors', (Chapter 8), (Addison Wesley, Reading, MA, 1987)

8 HAREL, D., AKERS, S.B., and KRISHNAMURTHY, B.:
'The star graph: an attractive alternative to the «-cube', Proc. Int.
Conf. Parallel Processing, 1987, pp. 393-400

400 IEE Proc.-Comput. Digit. Tech., Vol. 142, No. 6, November 1995

